Inactivation of nuclear factor-Y inhibits vascular smooth muscle cell proliferation and neointima formation.
نویسندگان
چکیده
OBJECTIVE Atherosclerosis and restenosis are multifactorial diseases associated with abnormal vascular smooth muscle cell (VSMC) proliferation. Nuclear factor-Y (NF-Y) plays a major role in transcriptional activation of the CYCLIN B1 gene (CCNB1), a key positive regulator of cell proliferation and neointimal thickening. Here, we investigated the role of NF-Y in occlusive vascular disease. APPROACH AND RESULTS We performed molecular and expression studies in cultured cells, animal models, and human tissues. We find upregulation of NF-Y and cyclin B1 expression in proliferative regions of murine atherosclerotic plaques and mechanically induced lesions, which correlates with higher binding of NF-Y to target sequences in the CCNB1 promoter. NF-YA expression in neointimal lesions is detected in VSMCs, macrophages, and endothelial cells. Platelet-derived growth factor-BB, a main inductor of VSMC growth and neointima development, induces the recruitment of NF-Y to the CCNB1 promoter and augments both CCNB1 mRNA expression and cell proliferation through extracellular signal-regulated kinase 1/2 and Akt activation in rat and human VSMCs. Moreover, adenovirus-mediated overexpression of a NF-YA-dominant negative mutant inhibits platelet-derived growth factor-BB-induced CCNB1 expression and VSMC proliferation in vitro and neointimal lesion formation in a mouse model of femoral artery injury. We also detect NF-Y expression and DNA-binding activity in human neointimal lesions. CONCLUSIONS Our results identify NF-Y as a key downstream effector of the platelet-derived growth factor-BB-dependent mitogenic pathway that is activated in experimental and human vasculoproliferative diseases. They also identify NF-Y inhibition as a novel and attractive strategy for the local treatment of neointimal formation induced by vessel denudation.
منابع مشابه
Sarco/Endoplasmic Reticulum Ca -ATPase Gene Transfer Reduces Vascular Smooth Muscle Cell Proliferation and Neointima Formation in the Rat
Proliferation of vascular smooth muscle cells (VSMC) is a primary cause of vascular disorders and is associated with major alterations in Ca handling supported by loss of the sarco/endoplasmic reticulum calcium ATPase, SERCA2a. To determine the importance of SERCA2a in neointima formation, we have prevented loss of its expression by adenoviral gene transfer in a model of balloon injury of the r...
متن کاملSarco/endoplasmic reticulum Ca2+-ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat.
Proliferation of vascular smooth muscle cells (VSMC) is a primary cause of vascular disorders and is associated with major alterations in Ca2+ handling supported by loss of the sarco/endoplasmic reticulum calcium ATPase, SERCA2a. To determine the importance of SERCA2a in neointima formation, we have prevented loss of its expression by adenoviral gene transfer in a model of balloon injury of the...
متن کاملCorrigendum: Interferon regulatory factor 9 is critical for neointima formation following vascular injury
Interferon regulatory factor 9 (IRF9) has various biological functions and regulates cell survival; however, its role in vascular biology has not been explored. Here we demonstrate a critical role for IRF9 in mediating neointima formation following vascular injury. Notably, in mice, IRF9 ablation inhibits the proliferation and migration of vascular smooth muscle cells (VSMCs) and attenuates int...
متن کاملAdipose differentiation-related protein knockdown inhibits vascular smooth muscle cell proliferation and migration and attenuates neointima formation
Vascular smooth muscle cells (VSMCs) have an important role in atherosclerosis development. Evidence has demonstrated that adipose differentiation‑related protein (ADRP) is associated with foam cell formation and atherosclerosis progression. However, to the best of our knowledge, no previous studies have investigated the role of ADRP knockdown in platelet‑derived growth factor (PDGF)‑stimulated...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 5 شماره
صفحات -
تاریخ انتشار 2013